

Operating Manual EMGZ470A.W / EMGZ472A.W EMGZ470A.W.D / EMGZ472A.W.D

Digital microprocessor controlled Tension Measuring Amplifier with integrated PROFIBUS interface

Operating Manual Version 2.3 04/2007 ff Firmware Version from 1.04 08/2006 GSD Version 1.03 05/02

This operating manual is also available in German. Please contact your local representative.

Diese Bedienungsanleitung ist auch in Deutsch erhältlich. Bitte kontaktieren Sie Ihren nächstgelegenen FMS Vertreter.

© by FMS Force Measuring Systems AG, CH-8154 Oberglatt – All rights reserved.

1 Safety Instructions

1.1 Warnings

a) High danger of health injury or loss of life

Danger

This symbol refers to high risk for persons to get health injury or loss of life. This warning has to be followed strictly.

b) Risk of damage of machines

A Caution

This symbol refers to information, that, if ignored, could cause heavy mechanical damage. This warning has to be followed absolutely.

c) Note for proper function

This symbol refers to important information about proper use. If not followed, malfunction can be the result.

1.2 List of Safety Instructions

▲ The functionality of the Tension Measuring Amplifier is only guaranteed, if the application and component recommendations are followed. In case of other arrangement, heavy malfunction can be the result. Therefore, the installation instructions on the following pages must strictly be followed.

▲ Local installation regulations are to preserve safety of electric equipment. They are not taken into consideration by this operating manual. However, they have to be strictly followed.

▲ Inadequate earth ground connection may cause electric shocks to persons, malfunction of the total system or damage of the measuring amplifier! It is vital to ensure a good earth ground connection.

▲ Improper handling may damage the fragile electronic equipment! Don't use rough tools such as screwdrivers or pliers! Operators handling the processor board must wear a well earthed bracelet in order to discharge static electricity.

Table of Contents

1	Safety Instructions				
	1.1 Warnings 1.2 List of Safety Instructions	2			
2	Definitions	4			
3	System Components				
4	 System Description	5 5 5 5			
5	4.4 Block Diagram	6 7			
5	Quick Instantion Guide				
0	 Dimensions 6.1 Dimensions of Offset Version (EMGZ470A.W) 6.2 Dimensions Double-Channel Version (EMGZ470/472A.W.D) 	ð 8 9			
7	Installation and Wiring	10			
	7.1 Mounting the Force Sensors	10			
	7.2 Mounting of the Measuring Amplifier	10			
	7.3 Wiring from Measuring Amplifier to Force Sensor	10			
	7.4 Wiring Of Power Supply and PROFIBUS Data Cable	11			
	7.6 Setting the PROFIBUS Address	12			
8	PROFIBUS Interface Description	14			
	8.1 GSD File	14			
	8.2 EMGZ470A.W/472A.W DP Slave Functional Description	14			
	8.3 Initial Parameters	14			
	8.4 Configuration 8.5 Process Data	15			
0		10			
9	Calibrating the Measuring Amplifier				
	9.1 Simulating Method, Calibration within the PLC	18			
	9.2 Simulating Method, Calibration using Control Byte (Module 1 only)	19			
	9.4 Mathematical Method (Module 1 only)	20			
	9.5 Configuring the Lowpass Filter	21			
10	Trouble Shooting				
11	Technical Data EMGZ470A.W/472A.W				

2 Definitions

Offset: Correction value for compensation of the zero point difference. The offset adjustment ensured that a force of 0N will generate a signal of 0V exactly.

Gain: Amplification factor for the measuring signal. Use of proper value will set the measuring range of the sensor exactly corresponding to the signal output range.

Strain gauge: Electronic component that changes its resistance when it is extended. Strain gauges are used in the FMS force sensors to gather the feedback value.

3 System Components

The EMGZ470A.W/472A.W consists of the following components (refer also to fig. 1):

Force sensors

- For mechanical/electrical conversion of the tension force
- Force measuring bearing
- Force measuring roller
- Force measuring journal
- Force measuring bearing block

Electronic unit EMGZ470A.W/472A.W

- EMGZ470A.W: For supplying one force sensor and amplifying the mV signal
- EMGZ472A.W: For supplying two force sensors and amplifying the mV signal
- EMGZ470A.W.D.W/472A.D.W: For supplying one or two double range force sensors and amplifying the mV signals
- With intergrated PROFIBUS interface for operation and parametrization
- Operates as PROFIBUS DP slave according to EN 50170
- For wall mounting, set off of force sensor (EMGZ470A.W.W)

PROFIBUS master computer

- For operation of the electronic unit EMGZ470A.W/472AW
- Operates as PROFIBUS DP master according to EN 50170
- Any master computer or PLC suitable

(Italic text indicates a variant or an option)

4 System Description

fig. 1: Basic structure EMGZ470A.W/472A.W Tension Measuring Amplifier E470001e

4.1 Functional Description

The force sensor measures the tension force in the material and transmits the value as a mV signal to the electronic unit. The electronic unit amplifies the mV signal depending on configuration. The resulting feedback value can be read by the PROFIBUS master. The application dependent calculations will be done by the PROFIBUS master.

4.2 Force Sensor

The force sensors use the flexion beam principle. The flexion is measured by strain gauges and transmitted to the electronic unit as mV signal. Power supply exerts influence to the strain gauges Wheatstone Bridge. The force sensors are therefore supplied from the electronic unit with a very accurate power supply.

4.3 Electronic Unit EMGZ470A.W/472A.W

Common

The electronic unit contains a microprocessor to handle all calculations and communications, the highly accurate sensor power supply and the signal amplifier for the measuring value. In addition, a PROFIBUS interface is integrated to the electronic unit.

The EMGZ470A.W.D /472A.W.D has the complete electronic unit twice to evaluate two measuring ranges.

EMGZ470A.W	for 1 force sensor
EMGZ472A.W	for 2 force sensors (sum signal)
EMGZ470A.W.D	for 1 double range force sensor
EMGZ472A.W.D	for 2 double range force sensors
	(1 sum signal per measuring range)

Strain gauge amplifier

The strain gauge amplifier provides the highly accurate 4V power supply. A highly accurate, fixed difference amplifier rises the mV signal up to 10V. This signal will be fed to the A/D converter. The microprocessor then calculates a standardized signal from the digitized measuring value, which is fed to the PROFIBUS interface.

PROFIBUS interface

The EMGZ470A.W/472A.W operates as PROFIBUS DP slave according to EN 50170. All settings and the entire communication is done by the integrated PROFIBUS interface.

4.4 Block Diagram

5 Quick Installation Guide

- Check all your requirements such as: Configuration of the PROFIBUS interface (address number, data format, required PROFIBUS cycle time, termination) and calibration mode (ref. to "9. Calibrating the measuring amplifier") etc..
- Draw your final wiring diagram according to the FMS recomendations (refer to "7.5 Wiring diagram)
- Install and wire all your components (refer to "7. Installation and wiring")
- Make settings in the PROFIBUS master computer (DP master) (ref. to "8. PROFIBUS Interface Description")
- Put measuring amplifier into operation and calibrate it by PROFIBUS (refer to ,,9. Calibrating the measuring amplifier")
- Turn system on; proceed with a test run with low speed
- If required, activate additional application-specific functions of the PROFIBUS master computer (DP master)

If a real-time control loop is implemented with the PROFIBUS, you must ensure that the application-specific PROFIBUS protocol is timewise short enough to provide sufficient control dynamics.

Operating Manual EMGZ470A/472A

6 Dimensions

6.1 Dimensions of Offset Version (EMGZ470A.W)

6.2 Dimensions Double-Channel Version (EMGZ470/472A.W.D)

9

7 Installation and Wiring

A Caution

The functionality of the Tension Measuring Amplifier is only guaranteed, if the application and components recommendations are followed. In case of other arrangements, heavy malfunction can be the result. Therefore, the installation instructions on the following pages must strictly be followed.

A Caution

Local installation regulations are to preserve safety of electric equipment. They are not taken into consideration by this operating manual. However, they have to be strictly followed.

7.1 Mounting the Force Sensors

Mounting of the force sensors is done referring to the FMS installation manual which is delivered together with the force sensors.

7.2 Mounting of the Measuring Amplifier

The measuring amplifier is mounted directly to the force sensor using the FMS standard plug (fig. 3). When using the offset version (EMGZ470A.W. / EMGZ472A.W) the housing is mounted to the machine frame close to the force sensor (fig. 4 and 5).

7.3 Wiring from Measuring Amplifier to Force Sensor

EMGZ470A.W / EMGZ472A.W

The cables are bared as shown in fig. 6 and then soldered to the terminals on the pc board according to wiring diagram (fig. 8 and 9).

S Note

Modifications in the wiring by the customer are not recommended. The connection of the shield must be done as indicated in our wiring diagram. The shield should be connected only to the measuring amplifier. On the "force sensor side", the shield should stay open. Other arrangements may cause ground/earth loops which may interfere with the measuring signal. Malfunction can be the result.

7.4 Wiring of Power Supply and PROFIBUS Data Cable

Wiring of the power supply

The wiring of the power supply (24 VDC) to the terminals in the housing is covered in the wiring diagram.

A Caution

Inadequate earth ground connections may cause electric shock to persons, malfunction of the total system or damage of the measuring amplifier! It is vital to ensure a good earth ground connection.

A Caution

Improper handling of the amplifier unit may damage the fragile electronic circuitry. Don't use rough tools such as screwdrivers or pliers! Handling in the electronic unit must always take place with the operator using well earthed antistatic bracelets. This will discharge static electricity of your body before touching the electronic unit!

Wiring of the PROFIBUS cables

The standardized PROFIBUS cable type A $(STP 2x0.34^2)$ [AWG 22] has to be used for the PROFIBUS data cable. The cables are bared referring to fig. 7 and connected to the terminals according to the wiring diagram.

E470010e

A Caution

The shield of the PROFIBUS cable is only grounded if the shield is connected with the PG gland.

cables

Termination

If both cables are connected (Bus-in and Bus-out), the two termination jumpers have to be removed (fig. 8 and 9).

If only one cable is connected (Bus-in), both termination jumpers have to be set (fig. 8 and 9).

Note

The PROFIBUS network has to be terminated properly. Otherwise the installation cannot be put into operation. Please ensured that only the last device of the PROFIBUS chain is terminated.

7.5 Wiring Diagram

fig. 8: Wiring diagram EMGZ470A.W/472A.W

E470006e

fig. 9: Wiring diagram EMGZ470A.W.D/472A.D

E472002e

7.6 Setting the PROFIBUS Address

The measuring amplifier requires a unique PROFIBUS address which distinguish the device definitely in the whole PROFIBUS network. No other PROFIBUS device in the same network may use the same address. The address has to be between 0...125.

The PROFIBUS address is set with the DIP switch (fig. 9). Please refer to the table below for the setting. After switching the measuring amplifier off and on, the new address becomes valid.

fig. 10: Codification of the PROFIBUS address (Example with address 54) E470007e

Ad	DIP switch	Ad	DIP switch	Ad	DIP switch	1	Ad	DIP switch	A	dr	DIP switch
r		r		r			r				
0	0000 0000	25	0001 1001	50	0011 0010		75	0100 1011	1	00	0110 0100
1	0000 0001	26	0001 1010	51	0011 0011		76	0100 1100	1	01	0110 0101
2	0000 0010	27	0001 1011	52	0011 0100		77	0100 1101	1	02	0110 0110
3	0000 0011	28	0001 1100	53	0011 0101		78	0100 1110	1	03	0110 0111
4	0000 0100	29	0001 1101	54	0011 0110		79	0100 1111	1	04	0110 1000
5	0000 0101	30	0001 1110	55	0011 0111		80	0101 0000	1	05	0110 1001
6	0000 0110	31	0001 1111	56	0011 1000		81	0101 0001	1	06	0110 1010
7	0000 0111	32	0010 0000	57	0011 1001		82	0101 0010	1	07	0110 1011
8	0000 1000	33	0010 0001	58	0011 1010		83	0101 0011	1	08	0110 1100
9	0000 1001	34	0010 0010	59	0011 1011		84	0101 0100	1	09	0110 1101
10	0000 1010	35	0010 0011	60	0011 1100		85	0101 0101	1	10	0110 1110
11	0000 1011	36	0010 0100	61	0011 1101		86	0101 0110	1	11	0110 1111
12	0000 1100	37	0010 0101	62	0011 1110		87	0101 0111	1	12	0111 0000
13	0000 1101	38	0010 0110	63	0011 1111		88	0101 1000	1	13	0111 0001
14	0000 1110	39	0010 0111	64	0100 0000		89	0101 1001	1	14	0111 0010
15	0000 1111	40	0010 1000	65	0100 0001		90	0101 1010	1	15	0111 0011
16	0001 0000	41	0010 1001	66	0100 0010		91	0101 1011	1	16	0111 0100
17	0001 0001	42	0010 1010	67	0100 0011		92	0101 1100	1	17	0111 0101
18	0001 0010	43	0010 1011	68	0100 0100		93	0101 1101	1	18	0111 0110
19	0001 0011	44	0010 1100	69	0100 0101		94	0101 1110	1	19	0111 0111
20	0001 0100	45	0010 1101	70	0100 0110		95	0101 1111	1	20	0111 1000
21	0001 0101	46	0010 1110	71	0100 0111		96	0110 0000	1	21	0111 1001
22	0001 0110	47	0010 1111	72	0100 1000		97	0110 0001	1	22	0111 1010
23	0001 0111	48	0011 0000	73	0100 1001		98	0110 0010	1	23	0111 1011
24	0001 1000	49	0011 0001	74	0100 1010		99	0110 0011	1	24	0111 1100
									1	25	0111 1101

8 PROFIBUS Interface Description

8.1 GSD File

The PROFIBUS DP master has to know which devices are connected to the PROFIBUS network. For this purpose the GSD file is required. The GSD file for the EMGZ470A.W / 472A.W measuring amplifier can be taken from the following internet address:

http://www.fms-technology.com/gsd

The GSD file can also be supplied on a **CD-ROM** on request. In this case please contact FMS customer service.

Read the GSD file into the PROFIBUS DP master

How to read in the GSD file into the control system (DP master) depends on the used control system. For further information, refer to the documentation of the control system.

Note

The GSD file version must match with the firmware version of the measuring amplifier. Otherwise set-up problems may occur. Version numbers of firmware and GSD file are indicated on the cover page of this operating manual.

8.2 EMGZ470A.W/472A.W DP Slave Functional Description

The measuring amplifier EMGZ470A.W/472A supports the PROFIBUS DP protocol according to EN 50170. Hereby the measuring amplifier operates as DP slave and the control system as DP master. Several parameters have to be set and met by the control system.

8.3 Initial Parameters

Initialisation parameters are sent from the control system to the measuring amplifier when the initialisation process is started. Normally this parameter set has been preprogrammed with fixed values for a given machine.

The first bytes in the parameter telegram are specified in the EN 50170 standard. An user segment of 6 bytes is defined for the measuring amplifier.

Byte	Use	Value	Meaning
0	Initial parameter	0	(Remain Offset unchanged)
		1	Find Offset
1	User Gain Reference,	0	(Remain Gain unchanged)
	High Byte	≠0	Calibrate Gain: Tell the measuring amplifier the
2	User Gain Reference,		force value which corresponds to the actual load.
	Low Byte		
3	Lowpass filter	0	Filter OFF
		≠0	Filter ON (ref. to "9.5 Configuring the Lowpass
			Filter")

Byte 0 (Find Offset) has priority against Byte 1 + 2 (Calibrate Gain).

8.4 Configuration

The configuration defines the amount of process data (byte and word) that is sent during the cyclic communication from the control system to the measuring amplifier and from the measuring amplifier to the control system. Normally a fixed value is set with the programming tool of the control system.

To ensure maximum flexibility, several modules (telegram structure) can be chosen. In a single measuring amplifier only one module can be set active at a time. The terminology and structure of the modules base on the profiles described in the variable speed drives section of the PROFIBUS user organization.

Module 1: Full control

3 bytes are transmitted from the control system to the measuring amplifier and vice versa in each data cycle.

	Byte 0	Byte 1	Byte 2
Request telegram	Control byte	Main reference value	Main reference value
(Master \rightarrow Slave)	(STB)	Higher Byte	Lower Byte
Response telegram	Status Byte	Main feedback value	Main feedback value
(Slave \rightarrow Master)	Status	Higher Byte	Lower Byte

Module 2: Feedback value with status

The control system sends periodically an empty telegram. The measuring amplifier answers with the actual feedback value and with a status byte which indicates the quality of the feedback value. This configuration can be used after offset and gain adjustment has been completed. It can only be used if no process parameters of the measuring amplifier are read or modified, or if the controller is not running the evaluation the feedback value.

	Byte 0	Byte 1	Byte 2
Request telegram		empty	
(Master \rightarrow Slave)			
Response telegram	Status Byte	Main feedback value	Main feedback value
(Slave \rightarrow Master)	Status	Higher Byte	Lower Byte

Module 2a: Feedback value with status

It's identical with module 2 but the length of the response telegram is 4 Byte. The higher status byte is not used and therefore contains all 0.

	Byte 0	Byte 1	Byte 2	Byte 3	
Request telegram	empty				
(Master \rightarrow Slave)					
Response telegram	00000000	Status Byte	Main	Main	
(Slave \rightarrow Master)	Higher Byte	Lower Byte	feedback	feedback	
			value	value	
			Higher Byte	Lower Byte	

8.5 Process Data

The amount of process data specified in the configuration is transmitted periodically. It is distinguished between value, main feedback value, control byte and status byte.

Control byte (STB)

The control byte transmits the required command to the measuring amplifier. (Module 1 only)

Bit #

Value	Meaning	Remarks
00h	Default	Normal operating mode
09h	Read Device Type	
21h	Read User Offset	
23h	Write User Offset	HSW = User Offset to be written
25h	Find User Offset	Measuring value will be set to zero
29h	Read User Gain	
2Bh	Write User Gain	HSW = User Gain to be written
2Dh	Calibrate User Gain	HSW = Force value which corresponds to the
		actual material tension
F9h	Read Firmware	
	Version	

Main reference value (HSW)

The main reference value transmits the actual parameter value. (Module 1 only)

	Master	\rightarrow Slave
	STB	HSW
Bit #		150

The main reference value is a 16 bit word (range ± 32767). The high byte is transmitted before the low byte.

We recommend to set Offset and Gain such that loading the sensor at nominal force will result in a feedback value of 10000 (default). (ref. to "9. Calibrating the measuring amplifier")

Status byte (Status)

Bit #

The status byte indicates the status of the measuring amplifier.

Slave \rightarrow	Master
Status	HIW
70	

Value	Meaning	Remarks
00h	Ok	Acquiring of measuring value ok
02h	Overflow	The allowed measuring range is exceeded
04h	Error	An error appeared during acquiring of the measuring
		value
06h	Overload	The sensor power source is overload
09h	Read Device Type	EMGZ470: HIW = 1 resp. EMGZ472: HIW = 2
21h	User Offset read	HIW = User Offset read
23h	User Offset written	HIW = User-Offset written
25h	User Offset found	HIW = User Offset found
29h	User Gain read	HIW = User Gain read
2Bh	User Gain written	HIW = User Gain written
2Dh	User Gain	HIW = User Gain calculated
	calibrated	
F9h	Firmware Version	HIW = main version (high byte) + sub version (low)
		byte)

Main actual value (HIW)

The main feedback value transmits the actual measuring value.

	Slave \rightarrow	Master	
	Status	HIW	
Bit #		150	

The main feedback value is a 16 bit word (range ± 32767) which transmits the processed measuring value of the measuring amplifier. The high byte is transmitted before the low byte

9 Calibrating the Measuring Amplifier

To get correct measuring values, offset and gain have to be determinate when putting the device into operation. There are several methods for this task:

Method	Use with	Advantage
Simulating method	Module 1+2	No settings required for the
calibration within the PLC		measuring amplifier
Simulating method	Module 1+2	Can be done without programming
calibration using initial		
parameters		
Simulating method	Module 1	Highest flexibility
calibration using control byte		
Mathematical method	Module 1	Less accurate than simulating
		method

9.1 Simulating Method, Calibration within the PLC

The following instructions are referring to a setup and calibration inside the machine. The material tension will be simulated by a weight (fig. 10).

Offset and Gain calibration is done in the PLC or the master computer.

- Insert material or a rope loosely to the machine.
- The offset corresponds to the actually transmitted main feedback value (HIW):

$$offset = HIW$$

- Load material or rope with a defined weight (fig. 10)
- The gain factor is now calculated from the actually transmitted main feedback value (HIW):

$$gain = \frac{F_{Calib} \cdot 10000}{F_{No\min al} \cdot (HIW - offset)}$$

• The determined values for gain and offset are used by the control system to calculate the actual material tension in [N] from the main feedback value:

$$F_{Beff} = gain \cdot \frac{F_{Nominal}}{10000} \cdot (HIW - offset)$$

Definition of symbols:

 F_{Calib} applied calibration load [N or lbs] (refer to fig. 11) $F_{Nominal}$ nominal force of sensor [N or lbs] F_{Beff} actual material tension [N or lbs]HIWmain feedback value

fig. 10: Calibrating the measuring amplifier C431011e

9.2 Simulating Method, Calibration using Initial Parameters

The following instructions are referring to a setup and calibration inside the machine. The material tension will be simulated by a weight (fig. 10).

Offset and Gain calibration is done in the measuring amplifier using the initial parameter (ref. also to "8.3 Initial Parameter").

- Insert material or a rope loosely to the machine.
- Set initial parameter byte 0 to "1". The measuring amplifier calculates automatically the new offset value.
- Reset initial parameter byte 0 to "0".
- Load material or rope with a defined weight (fig. 10)
- Set initial parameter byte 1+2 to a measuring value corresponding to the applied weight (ref. to "8.3 Initial Parameter"). The measuring amplifier calculates automatically the new gain value.
- Reset initial parameter byte 1+2 to "0".
- Offset and Gain are now fail safe stored in the measuring amplifier.

Note

The main feedback value (HIW) must also be capable to indicate correctly overload values. Therefore the calibration must be done in a way that the HIW range (± 32767) is not fully exhausted at nominal load. We recommend to set Offset and Gain so that loading the sensor at nominal force will give a feedback value of 10000.

9.3 Simulating Method, Calibration using Control Byte (Module 1 only)

The following instructions refer to a setup and calibration inside the machine. The material tension will be simulated by a weight (fig. 10).

Offset and Gain calibration is done in the measuring amplifier using the control byte and the main reference value (module 1 only; ref. also to "8.5 Process Data").

- Insert material or a rope loosely to the machine.
- Set control byte of a request telegram to "25h". The measuring amplifier calculates automatically the new offset value. The new offset value is transmitted in the corresponding response telegram (ref. to "8.5 Process Data").
- Load material or rope with a defined weight (fig. 10)
- Enter control byte of a request telegram to "2Dh" and the main reference value (HSW) to a measuring value corresponding to the applied weight (ref. to "8.3 Initial Parameter"). The measuring amplifier calculates automatically the new gain value. The new gain value is transmitted in the corresponding response telegram (ref. to "8.5 Process Data").
- Offset and Gain are now fail safe stored in the measuring amplifier.
- If required, you can switch now to module 2 (feedback with status) (ref. to "8.4 Configuration").

9.4 Mathematical Method (Module 1 only)

If the material tension cannot be simulated, calibration has to be done by calculation. This way of calibrating is less accurate because the exact angles are often unknown. In addition the actual mounting conditions, which usually deviate from the ideal world, can seldom taken into account.

fig. 11: Force vectors in the FMS force measuring bearing

C431012e

- Offset adjustment has to be done as described under "Simulating method, calibration using control byte".
- The Gain value will be calculated by the following formula:

$$GainFactor = \frac{1}{\sin \delta \cdot \sin(\gamma/2) \cdot n}$$

Definition of symbols:

α	angle between vertical and measuring web axis	F_{B}	material tension
β	angle between vertical and F_M	F_{G}	roller weight
γ	wrap angle of material	F_{M}	measuring force resulting from
			F_{B}
γ1	entry angle of material	F _{Mef}	effective measuring force
		f	
γ_2	exit angle of material	n	number of force sensors
δ	Angle between measuring web axis		
	and F_M		

- Enter control byte of a request telegram to "2Bh" and the main reference value (HSW) to the calculated gain value (ref. to "8.5 Process Data"). The measuring amplifier stores the gain value. The new gain value is transmitted in the corresponding response telegram (ref. to "8.5 Process Data").
- Offset and Gain are now fail safe stored in the measuring amplifier.

9.5 Configuring the Lowpass Filter

The measuring amplifier contains a lowpass filter. This filter suppresses faulty signal variations that may be caused by unbalanced rollers, vibrations of the machine, or similar instances. Signal variations that are faster than the cut-off frequency of the filter are suppressed. The lower the cut-off frequency, the more sluggish the output signal will be.

A filter of 1^{st} or 2^{nd} order can be used. The 2^{nd} order filter has a better selectivity than a filter of 1^{st} order.

The lowpass filter is configured by setting the cut-off frequency and its filter order. You determine the setting value in the table below and send it to the measuring amplifier using the initial parameters, byte 3 (ref. to "8.3 Initial parameters").

Lowpass filter cut-off frequency	Setting value for filter of 1 st order	Setting value for filter of 2 nd order
(Filter OFF)	00h	00h
1 Hz	43h	C3h
2 Hz	44h	C4h
5 Hz	45h	C5h
10 Hz	46h	C6h
20 Hz	47h	C7h
50 Hz	48h	C8h
100 Hz	49h	C9h

Note

If the cut-off frequency is set too low, the output signal will become sluggish. In such a case it could happen that the feedback value is no longer suitable for control loop applications. The best trade off for the cut-off frequency must be found taking the control loop limitations.

10 Trouble Shooting

Error	Cause	Corrective action
Status Byte (Status) 02h = OVERFLOW:	Force sensor wrong connected / cabling defect	Correct sensor cabling
The sensor gives a signal too big (> ±9.92mV)	Force sensor defect	Replace force sensor
Status Byte (Status) 04h = ERROR	A general error has appeared while measuring	 Turn machine off and back on. If the problem persists, check wiring to the force sensor. If the wiring is ok and the problem persists, contact FMS customer service.
Status Byte (Status) 06h = OVERLOAD:	Cabling defect (short cut)	Correct sensor cabling, replace cable if necessary
The sensor power supply	Force sensor defect	Replace force sensor
is overload	EMGZ470A.W: More than 1 force sensor connected	There can be only 1 force sensor connected to the EMGZ470A.W
Feedback value is > 0 even though material is loosely	Offset badly calculated	Proceed for offset adjustment again (refer to "8.6 Calibrating the measuring amplifier")
Feedback value doesn't correspond with the effective material tension	Gain badly calculated	Proceed for measuring amplifier calibration again (refer to "8.6 Calibrating the)
Measuring amplifier does not respond by PROFIBUS (red LED	DIP switch and station address (setting in the PROFIBUS DP master) don't match	Verify / correct DIP switch and station address
lights)	Application in PLC / master computer reads from a wrong I/O address of the PROFIBUS DP master	Detect correct I/O address of the PROFIBUS DP master and set it in your application
	Program error; the answer given by the measuring amplifier is badly evaluated	Correct program of the control system
Measuring amplifier does not respond by PROFIBUS (red LED	Wrong address set	Set slave address to correct value (refer to "7.6 Setting the PROFIBUS address") or modify the program
doesn't light)	PROFIBUS data cable badly terminated	Terminate data cable correctly; check position of the jumpers (refer to ,,7.4 Wiring of power supply and)
	PROFIBUS wires (A and B) reversed	Reverse PROFIBUS wires (A and B) in the terminal block
	Power supply not correct	Check / correct power supply. The green LED must light (fig. 6)
	Electronic unit defect	Contact FMS customer service

11 Technical Data EMGZ470A.W/472A.W

Connection of force sensors	EMGZ 470A.W: 1 force sensor of 350Ω
	EMGZ 472A.W: 2 force sensors of 350Ω
	EMGZ 470A.W.D: 1 force sensor of $2x350\Omega$
	EMGZ 472A.W.D: 2 force sensors of $2x350\Omega$
Excitation of sensors	4VDC
Input signal voltage	07.2mV (max. 9.92mV)
Resolution A/D converter	±2048 Digit (12 Bit)
Measuring error	<0.05% FS
Cycle time	2ms
Operation	entirely by PROFIBUS
Feedback value	integer ±10000
Limit value monitoring	to be developed – ask FMS customer service
PROFIBUS protocol	PROFIBUS DP slave according to EN 50170
PROFIBUS data transfer rate	up to 12Mbaud
PROFIBUS address	set by DIP switch (0125)
PROFIBUS operating modes	Full control, Feedback with status
Connection (Bus in, Bus out,	3 cables ø810mm [.3"4"] led through PG glands
Power)	to 6 screw terminals
Required cables	PROFIBUS cable type A, STP 2x0.34 ² [AWG 22]
Power supply	1836VDC / 0.1A
Temperature range	–1060°C [14140°F]
Protection class	IP67

Operating Manual EMGZ470A/472A

FMS Force Measuring Systems AG Aspstrasse 6 8154 Oberglatt (Switzerland) Tel. +41 44 852 80 80 Fax +41 44 850 60 06 info@fms-technology.com www.fms-technology.com

FMS Italy

Via Baranzate 67 I-20026 Novate Milanese Tel: +39 02 39487035 Fax: +39 02 39487035 fmsit@fms-technology.com

FMS USA, Inc.

2155 Stonington Ave. Suite 119 Hoffman Estates, IL 60169 USA Tel. +1 847 519 4400 Fax +1 847 519 4401 fmsusa@fms-technology.com

FMS UK

Highfield, Atch Lench Road Church Lench Evesham WR11 4UG, Great Britain Tel. +44 1386 871023 Fax +44 1386 871021 fmsuk@fms-technology.com